Geoenergy
Geothermal power is considered to be renewable because any projected heat extraction is small compared to the Earth's heat content. The Earth has an internal heat content of 1031 joules (3·1015 TW·hr), approximately 100 billion times the 2010 worldwide annual energy consumption. About 20% of this is residual heat from planetary accretion, and the remainder is attributed to higher radioactive decay rates that existed in the past. Natural heat flows are not in equilibrium, and the planet is slowly cooling down on geologic timescales. Human extraction taps a minute fraction of the natural outflow, often without accelerating it. According to most official descriptions of geothermal energy use, it is currently called renewable and sustainable because it returns an equal volume of water to the area that the heat extraction takes place, but at a somewhat lower temperature. For instance, the water leaving the ground is 300 degrees, and the water returning is 200 degrees, the energy obtained is the difference in heat that is extracted. Current research estimates of impact on the heat loss from the earth’s core are based on a studies done up through 2012.
Related Conference of Geoenergy
Geoenergy Conference Speakers
Recommended Sessions
- Artificial intelligence and IoT in energy systems
- Big data and energy
- Bioenergy systems and technologies
- Clean Energy Conversion Technologies
- Energy Management, Policy, Economics and Sustainability
- Energy Sciences
- Energy Storage
- Geoenergy
- Innovative Solutions for Energy Transitions
- Intelligent Energy Systems
- Mitigation Technologies
- Renewable Energy
Related Journals
Are you interested in
- Biofluid Flow Dynamics in Microfluidics - Microfluidics 2025 (France)
- Cell Sorting and Separation in Microfluidic Devices - Microfluidics 2025 (France)
- Fluid Mechanics in Microfluidic Devices - Microfluidics 2025 (France)
- High-Throughput Screening Using Microfluidics - Microfluidics 2025 (France)
- Lab-on-a-Chip Technologies for Diagnostics - Microfluidics 2025 (France)
- Microfluidic Biosensors for Disease Detection - Microfluidics 2025 (France)
- Microfluidic Devices for Environmental Monitoring - Microfluidics 2025 (France)
- Microfluidic Organ-on-a-Chip Models - Microfluidics 2025 (France)
- Microfluidic Platforms for DNA/RNA Analysis - Microfluidics 2025 (France)
- Microfluidic Systems for Protein Engineering - Microfluidics 2025 (France)
- Microfluidic Systems for Single-Cell Analysis - Microfluidics 2025 (France)
- Microfluidics for Drug Delivery and Nanomedicine - Microfluidics 2025 (France)
- Microfluidics for Personalized Medicine Applications - Microfluidics 2025 (France)
- Microfluidics in Cancer Research - Microfluidics 2025 (France)